A Carbohydrate-Based Approach for the Total Synthesis of 1,3-Polyol/ α-Pyrone Antifungal Natural Products

C. V. Ramana,* Burgula Srinivas, Vedavati G. Puranik, and Mukund K. Gurjar
National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411 008, India
vr.chepuri@ncl.res.in

Received May 16, 2005

An elimination and stereoselective hydrogenation of $\alpha-\mathrm{D}-$ glucoheptonic- γ-lactone derivative has been applied to prepare a differentially protected anti,anti-1,3,5-triol system, the utility of which has been extended for the total synthesis of anti-fungal 1,3-polyol/ α-pyrone natural products.

The 5,6 -dihydro- δ-pyrones with an integrated $1,3-$ skipped polyol system form a basic skeleton of several natural products represented by cryptocarya diacetate (1), ${ }^{1}$ passifloricin (2), ${ }^{2} 1,3$-polyol/ α-pyrones ($\mathbf{3}$ and $\mathbf{4}$), ${ }^{3}$ and strictifolione (5) ${ }^{4}$ (Figure 1). The broad range of biological activities associated with these natural products was ascribed to their inherent ability to act as good Michael acceptors. ${ }^{5}$ Natural products 3 and 4, ${ }^{3}$ isolated from Ravensara anisata, possess inhibitory activity against C. cucumerinum which was comparable to miconazole and

[^0]

FIGURE 1. Representative skipped polyol natural products with an integrated α-pyrone moiety.

FIGURE 2. Retrosynthetic strategy for the key syn,syn-1,3,5triol synthesis and of the α-pyrone moiety.
propiconazole. The synthesis of $\mathbf{3}$ and 4 reported by Shibasaki and co-workers turned out to be their enantiomers. ${ }^{6}$ Herein, we report the first synthesis of the natural occurring $\mathbf{3}$ and $\mathbf{4}$ by adopting the chiral pool approach.

The structural analysis of $\mathbf{3}$ and 4 revealed that the diacetonide (10) ${ }^{7}$ of commercially available α-D-glucohep-tonic- γ-lactone would be an ideal starting point as depicted in Figure 2. The deoxygenation at C-3 by basemediated elimination and stereocontrolled reduction ${ }^{8}$ and Barton-McCombie radical deoxygenation ${ }^{9}$ of C-5 followed by an inversion at C-4 are the key steps to secure the preparation of the key intermediate (7). Coupling reaction between the advanced intermediate ($\mathbf{6}$) and methyl propiolate by the Yamaguchi method, ${ }^{10}$ partial hydroge-

[^1]
SCHEME 1. Synthesis of the Epoxide 6^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 6 $\mathrm{h}, 84 \%$; (b) KO-t-Bu, THF, $-78{ }^{\circ} \mathrm{C}, 0.25 \mathrm{~h}, 81 \%$; (c) NaBH_{4}, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, methanol, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 61 \%$; (d) $\mathrm{NaH}, \mathrm{CS}_{2}$, MeI, THF, $-15{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 12 \mathrm{~h}, 93 \%$, followed by n-Bu 3 SnH , AIBN, toluene, reflux, $5 \mathrm{~h}, 71 \%$; (e) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, followed by $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{3}\right]^{+} \mathrm{I}^{-}, n$-BuLi, THF, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 12 \mathrm{~h}, 93 \%$; (f) DEAD, TPP, benzoic acid, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 69 \%$; (g) H_{2}-RaneyNi , ethanol, 20 psi, 12 h , followed by $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}, 91 \%$; (h) $\mathrm{NaH}, \mathrm{PMBCl}, \mathrm{DMF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 6 \mathrm{~h}$, followed by PPTS, methanol, $24 \mathrm{~h}, 85 \%$; (i) (i) $\mathrm{TsCl}, \mathrm{Bu}_{2} \mathrm{SnO}$ (cat.), triethylamine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$, followed by (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 0.5 \mathrm{~h}, 78 \%$.
nation, and lactonization should complete the total synthesis of the natural products 3 and 4.

Protection of the hydroxyl group at C-2 with silver oxide and benzyl bromide gave the benzyl ether 11. After substantial experimentation of the elimination step, we concluded that potassium tert-butoxide provided satisfactory yield. ${ }^{7 \mathrm{~d}, 8}$ Selective conjugate reduction of the lactone 9 with -OBn intact was achieved with $\mathrm{NiCl}_{2}-\mathrm{NaBH}_{4} .{ }^{11}$ The spectral and analytical data of 12 were in agreement with the assigned structure, which was further substantiated by single-crystal X-ray crystallography. ${ }^{12}$ Subsequent reduction of 8 with DIBAL-H and Wittig olefination with 3-phenylpropyltriphenylphosphorane furnished 13. The Z-configuration of $\mathbf{1 3}$ was evident from the coupling constant ($J=10.3 \mathrm{~Hz}$). Mitsunobu reaction of 13 using DEAD and benzoic acid was facile to give the benzoate derivative 14. Hydrogenation of the double bond present in $\mathbf{1 4}$ by using Raney-Ni followed by saponification with catalytic NaOMe gave the diol 7. The diol 7 was protected with p-methoxybenzyl chloride -NaH , and then the 1,2 -isopropylidene group hydrolyzed in the presence of PPTS in MeOH to obtain the terminal diol 15. The primary hydroxyl group of $\mathbf{1 5}$ was selectively tosylated by using $\mathrm{TsCl}, \mathrm{Bu}_{2} \mathrm{SnO}$, and triethylamine in dichloromethane followed by cyclization with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to afford the epoxide 6 (Scheme 1).

Our next concern involved the construction of the key pyrone ring for which the lithium salt of methyl propi-

[^2]SCHEME 2. Total Synthesis of Anti-fungal Natural Products 3/4 ${ }^{a}$

[^3]olate was reacted with the epoxide 6 in THF at $-78{ }^{\circ} \mathrm{C}$ to furnish the β-hydroxy alkyne derivative 16. The latter compound (16) was successively subjected to partial reduction in the presence of Lindlar catalyst and lactonization resulting in the formation of the α-pyrone intermediate 17.

Attempted deprotection of PMB ethers of $\mathbf{1 7}$ using TFA in dichloromethane provided a (1:1) regiomeric mixture of mono-PMB ethers 18 and 19 along with the diol 20. The diol 20 was converted to the diacetate 21 which showed spectral data identical with the reported values. ${ }^{7}$ The acetylation of $\mathbf{1 8} / \mathbf{1 9}$ followed by treatment with TFA gave a mixture of $\mathbf{3}$ and 4 (3:1), separated by preparative HPLC. The spectral and analytical data of $\mathbf{3}$ and 4 were identical with the data reported for the natural products. Notably, a periodic examination of ${ }^{1} \mathrm{H}$ NMR spectra of pure isomers 3 and 4 indicated the migratory aptitudes of acetyl group in these compounds, however with different rate of migration. For example, the interconversion of $\mathbf{4} \rightarrow \mathbf{3}$ was substantially faster than $\mathbf{3} \rightarrow \mathbf{4}$ (Scheme 2).

In summary, we report a simple strategy for the synthesis of anti,anti- and syn,syn-1,3,5-polyol systems using a chiral pool approach. This study enabled us to carry out the first total synthesis of antifungal natural 1,3-polyol/ α-pyrones 3 and 4.

Experimental Section

2-Benzyloxy-3-deoxy-6,7-O-isopropylidine-D-arabino-hept-2-enoic- γ-lactone (9). At $-78{ }^{\circ} \mathrm{C}$, a suspension of $\mathrm{KO}-t$ $\mathrm{Bu}(1.48 \mathrm{~g}, 13.2 \mathrm{mmol})$ in anhydrous THF (50 mL) was treated with a solution of 11 ($5 \mathrm{~g}, 13.2 \mathrm{mmol}$) in anhydrous THF (80 mL) and stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with a solution of acetic acid ($0.8 \mathrm{~mL}, 13.2 \mathrm{mmol}$) in THF (5 mL) and allowed to reach rt. The contents were filtered (Celite) and concentrated, and the crude product was purified by crystallization from ethyl acetate/hexane (1:3) to procure 9 $(3.43 \mathrm{~g}, 81 \%)$ as a colorless solid. $\mathrm{Mp}: 162{ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}=+31.7(c$ $\left.=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): v 3420,3020,2400,1760,1652,1381$, $1215,1059,756,668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=4.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{dd}, J=6.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=$ $6.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=$
7.6, 4.1 Hz, 1H), 2.40 (br.s, 1H), 1.37 (s, 3H), 1.35 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta: 25.1$ (q), 26.7 (q), 67.1 (t), 72.8 (t), 73.1 (d), 75.3 (d), 79.5 (d), 109.7 (s), 115.9 (d), 127.6 (d), 128.5 (d), 128.6 (d), 134.7 (s), 145.9 (s), 167.8 (s) ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$: C, 63.74; H, 6.29. Found: C, 63.80; H, 6.03.

2-O-Benzyl-3-deoxy-6,7-O-isopropylidine-D-gluco-heptoic-γ-lactone (12). At $0{ }^{\circ} \mathrm{C}$, a solution of 9 ($1 \mathrm{~g}, 3.1 \mathrm{mmol}$) in methanol (30 mL) was treated with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(220 \mathrm{mg}, 0.9$ mmol) and stirred for 30 min . To this solution were added $\mathrm{NaBH}_{4}(342 \mathrm{mg}, 9.1 \mathrm{mmol})$ and acetic acid (to maintain $\mathrm{pH}=$ 7) in three portions during a 10 min interval. After the addition was complete, stirring was continued for another 30 min at 0 ${ }^{\circ} \mathrm{C}$. The contents were filtered (Celite), concentrated, dissolved in ethyl acetate (25 mL), washed with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to get a white solid. The crude product was purified by crystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to get a white crystalline solid $12(615 \mathrm{mg}, 61 \%) . \mathrm{Mp}: 116{ }^{\circ} \mathrm{C} .[\alpha]^{25} \mathrm{D}=$ $+32.4\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): v 3442,2992,2881,1787$, $1455,1370,1216,848,755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.96$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (d, $J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.59 (ddd, $J=8.9,6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=9.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.45$ (br.d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $J=13.1,8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dt}, J=13.1,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta: 25.1$ (q), 26.7 (q), 31.1 (t), 67.2 (t), 72.1 (t), 72.9 (d), 73.2 (d), 75.3 (d), $76.4(\mathrm{~d})$, 109.4 (s), 128.0 (d), 128.4 (d), 136.9 (s), 174.5 (s) ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 63.34; $\mathrm{H}, 6.88$. Found: $\mathrm{C}, 63.38 ; \mathrm{H}, 7.14$.

Crystal Data. A colorless platelike crystal of approximate size $0.48 \times 0.24 \times 0.02 \mathrm{~mm}$ was used for data collection on a Bruker SMART APEX CCD diffractometer using Mo K α radiation with fine focus tube with 50 kV and 30 mA . Crystal to detector distance $6.05 \mathrm{~cm}, 512 \times 512$ pixels/frame, multiscan data acquisition. Total scans $=3$, total frames $=1212$, oscillation/frame -0.3°, exposure/frame $=10.0 \mathrm{~s} /$ frame, maximum detector swing angle $=-30.0^{\circ}$, beam center $=(260.2,252.5)$, in plane spot width $=1.24$, SAINT integration, θ range $=2.52-$ 25.0°, completeness to θ of 23.33° is 99.2%. SADABS correction applied, $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}, M=322.35$. Crystals belong to monoclinic, space group $P 2_{1}, a=9.195(1) \AA, b=6.1777(8) \AA, c=15.004(2)$ $\AA, \beta=93.846(2)^{\circ}, V=850.4(2) \AA^{3}, Z=2, D_{\mathrm{c}}=1.259 \mathrm{mg} \mathrm{m}^{-3}$, $\mu(\mathrm{Mo} \mathrm{K} \alpha)=0.095 \mathrm{~mm}^{-1}, T=295(2) \mathrm{K}, 4283$ reflections measured, 2795 unique $[I>2 \sigma(I)], R$ value 0.0594 , wR2 $=$ 0.1375. All of the data were corrected for Lorentzian, polarization, and absorption effects. SHELX-97 (ShelxTL) ${ }^{12}$ was used for structure solution and full-matrix least-squares refinement on F^{2}. Hydrogen atoms were included in the refinement as per the riding model.

Treatment of Epoxide 6 with Methyl Propiolate. Methyl propiolate ($590 \mu \mathrm{~L}, 6.6 \mathrm{mmol}$) was taken in a flame-dried twoneck round-bottom flask (50 mL) and dissolved in anhydrous THF (15 mL). The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $n-\mathrm{BuLi}(4.2 \mathrm{~mL}, 6.64 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) dropwise, stirred for 15 min , treated with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.84 \mathrm{~mL}, 6.6 \mathrm{mmol})$, and stirred for an additional 15 min . Once the formation of dark black alkyne borane was observed, a solution of epoxide 6 (335 $\mathrm{mg}, 0.66 \mathrm{mmol}$) in anhydrous THF (10 mL) was added and stirred for 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched at -78 ${ }^{\circ} \mathrm{C}$ by addition of satd $\mathrm{Na}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL})$ and taken in ethyl acetate-water, and the aqueous phase was extracted with ethyl acetate. The combined organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification by column chromatography (20% ethyl acetate in petroleum ether) gave 16 (365 $\mathrm{mg}, 93 \%) .[\alpha]^{25}{ }_{\mathrm{D}}=+56.7\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v 3457$, 3011, 2936, 2859, 2238, 1714, 1612, 1586, 1513, 1454, 1435, 1302, 1250, 1075, 1035, 822, 755, $667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.31-7.14(\mathrm{~m}, 9 \mathrm{H}), 6.83$ (br.d, $\left.J=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 4.52$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.90-3.73$ (m, 2H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.58$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.33(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz$) \delta: 24.6$ (t), 27.3 (t), 31.6 (t$)$, $33.9(\mathrm{t}), 35.9(\mathrm{t}), 38.3$ (t), 39.9 (t), 52.4 (q), 55.1 (q), 69.3 (d), 70.0 (t), 70.5 (t$), 74.5$ (s$), 74.8$ (d), 76.4 (d), 86.2 (s$), 113.7$ (d), 113.9 (d), 125.7 (d), 128.3 (d), 128.4 (d), 129.6 (d), 129.7 (d), 130.5 (s),
142.3 (s), 153.8 (s), 159.2 (s), 159.4 (s) ppm. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{7}$: C, $73.44 ; \mathrm{H}, 7.53$. Found: C, $73.14 ; \mathrm{H}, 7.80$.

PMB Deprotection of 17. A solution of compound 17 (145 $\mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with TFA $(50 \mu \mathrm{~L})$ and stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated bicarbonate solution, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified by column chromatography (40% $\rightarrow 50 \%$ ethyl acetate in petroleum ether) to afford a 1:1 mixture of alcohols 18 and 19 ($61 \mathrm{mg}, 54 \%$) and diol $20(20 \mathrm{mg}, 24 \%)$.

Data for 18 and 19. $[\alpha]^{25}{ }_{\mathrm{D}}=+54.8\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): v 3462,3019,2937,2860,1719,1612,1514,1454,1390$, $1251,1215,1035,757,668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.19-7.07(\mathrm{~m}, 7 \mathrm{H}), 6.82-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.96-5.88(\mathrm{~m}, 1 \mathrm{H}), 4.59-$ $4.21(\mathrm{~m}, 3 \mathrm{H}), 3.92-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.54(\mathrm{~m}, 1 \mathrm{H})$, $2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.45(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta: 24.1(\mathrm{t})$, $25.1(\mathrm{t}), 29.1(\mathrm{t}), 29.7(\mathrm{t}), 31.5(\mathrm{t}), 31.6(\mathrm{t}), 33.1(\mathrm{t}), 35.8(\mathrm{t}), 35.9$ $(\mathrm{t}), 37.6(\mathrm{t}), 38.8(\mathrm{t}), 40.7(\mathrm{t}), 41.8(\mathrm{t}), 55.1(\mathrm{q}), 68.0(\mathrm{~d}), 70.2(\mathrm{t})$, 70.4 (t), 70.6 (d), 74.7 (d), 75.2 (d), 75.5 (d), 79.5 (d), 113.9 (d), 121.2 (d), 121.4 (d), 125.6 (d), 125.7 (d), 128.2 (d), 128.3 (d), 129.5 (d), 129.6 (d), 129.8 (s), 142.2 (s), 142.5 (s$), 144.8$ (d), 145.2 (d), 159.3 (s), 159.4 (s), 163.9 (s), 164.3 (s) ppm. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}$: C, 73.94; H, 7.81. Found: C, 74.05; H, 7.63.

Data of Diol 20. $[\alpha]^{25}{ }_{\mathrm{D}}=+62.1\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$: $v 3684,3020,2934,1725,1522,1476,1215,1055,759,669 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.30-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.89$ (dt, $J=$ $9.8,4.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.57$ (br.ddt, $J=8.9,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.50(\mathrm{~b}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.39(\mathrm{~m}$, $2 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.32(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz})$ $\delta: 24.9(\mathrm{t}), 29.4(\mathrm{t}), 31.4(\mathrm{t}), 35.8(\mathrm{t}), 38.1(\mathrm{t}), 42.3(\mathrm{t}), 42.7(\mathrm{t})$, 69.5 (d), 72.7 (d), 76.2 (d), 121.2 (d), 125.7 (d), 128.2 (d), 128.3 (d), 142.4 (s), 145.4 (d), 164.2 (s) ppm. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$: C, 71.66; H, 8.23. Found: C, 71.39; H, 8.81.

Diacetate 21. Treatment of $\mathbf{2 0}(29 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(6 \mathrm{~mL})$ with $\mathrm{Ac}_{2} \mathrm{O}(85 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$, triethylamine (126 $\mu \mathrm{L}, 0.91 \mathrm{mmol}$), and DMAP (5 mg) and usual workup after 6 h of stirring followed by purification by column chromatography (30\% ethyl acetate in petroleum ether) gave 21 ($34 \mathrm{mg}, 94 \%$) as a yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+48.6\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right)$: $v 3020$, 2936, 2861, 1730, 1496, 1374, 1242, 1216, 1152, 1038, 758, 668 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.02-6.00(\mathrm{dd}, J=9.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.45(\mathrm{~m}, 1 \mathrm{H})$, $2.61-2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ CNMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 21.1$ (q), 24.6 (t), 29.1 (t), 31.0 $(\mathrm{t}), 34.1(\mathrm{t}), 35.6(\mathrm{t}), 38.9(\mathrm{t}), 38.9(\mathrm{t}), 67.8(\mathrm{~d}), 70.8(\mathrm{~d}), 74.9(\mathrm{~d})$, 121.3 (d), 125.7 (d), 128.2 (d), 128.4 (d), 142.3 (s), 144.7 (d), 163.7 (s), 170.6 (s), 170.8 (s) ppm. MALDI-TOF (MS): calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na} 425.19$, found $425.19(\mathrm{M}+\mathrm{Na})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$: C, 68.64; H, 7.51. Found: C, 68.89; H, 7.61.

Synthesis of α-Pyrone Natural Products 3 and 4. In a manner similar to that used in the deprotection of $\mathbf{1 7}$, treatment of $18-\mathrm{Ac} / 19-\mathrm{Ac}(58 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ with TFA $(20 \mu \mathrm{~L})$, stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , usual workup, and purification by column chromatography (40% ethyl acetate in petroleum ether) gave an equilibrium mixture of natural regioisomers 3 and $4(39 \mathrm{mg}, 90 \%)$ as a yellow oil. $[\alpha]^{25}{ }_{\mathrm{D}}=+39(c=$ $0.4, \mathrm{MeOH})\left[\right.$ lit. $\left.{ }^{3}[\alpha]^{25} \mathrm{D}=+35(c=0.05, \mathrm{MeOH})\right] . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v$ 3440, 3019, 2934, 2859, 1724, 1513, 1496, 1384, 1250, 1216, 1043, 757, $668 \mathrm{~cm}^{-1}$. MALDI-TOF (MS): calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}$ 383.18 , found $383.17\left(\mathrm{M}+\mathrm{Na}\right.$). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 69.98; H, 7.83. Found: C, 69.79; H, 7.96.

A portion of the $\mathbf{3 / 4}$ mixture was subjected to preparative HPLC separation, and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the separated 3 and 4 were recorded. In case of the minor isomer 4 , we found the equilibration is facile and the difference in the ratio of 4/3 changed from 1:0.14 $\left({ }^{1} \mathrm{H}\right.$ NMR $)$ to $\sim 1: 0.75\left({ }^{13} \mathrm{C}\right.$ NMR), the later being recorded overnight.

Major Isomer 3. $[\alpha]^{25} \mathrm{D}=+33(c=0.3, \mathrm{MeOH})\left[\right.$ lit. ${ }^{4}[\alpha]^{25} \mathrm{D}=$ $+35(c=0.05, \mathrm{MeOH})] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.27-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{dt}, J=9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.01 (br dt, $J=9.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.60$ (m, 1H), $3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.37$ (m, 2H), $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.41(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta: 21.3(\mathrm{q}), 24.8(\mathrm{t}), 29.4(\mathrm{t}), 31.1(\mathrm{t}), 34.5(\mathrm{t}), 35.7(\mathrm{t}), 41.7(\mathrm{t})$, 42.3 (t), 67.0 (d), 72.3 (d), 76.6 (d), 121.2 (d), 125.7 (d), 128.3 (d), 128.4 (d), 142.3 (s), 145.2 (d), 163.9 (s), 171.3 (s) ppm.

Minor Isomer 4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.84(\mathrm{ddd}, J=9.7,6.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01$ (ddd, $J=9.7,2.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.19(\mathrm{~m}, 1 \mathrm{H})$, $4.54-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48-2.43$ (m, 1H), 2.34-2.26 (m, 1H), 2.18 (ddd, $J=14.6,8.4$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (ddd, $J=14.6,6.8,4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.42(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) δ :
21.3 (q), 25.0 (t , 29.2 (t$), 31.3$ (t$), 35.8$ (t$), 37.7$ (t$), 39.3$ (t$), 41.7$ (t), 69.0 (d), 69.2 (d), 75.1 (d), 121.4 (d), 125.7 (d), 128.3 (d), 128.4(d), 142.4(s), 144.7 (d), 163.9 (s), 170.9 (s).

Acknowledgment. B.S. thanks CSIR, New Delhi, for the financial assistance in the form of a research fellowship.

Supporting Information Available: Experimental procedures and spectral and analytical data for all new compounds (3/4, 6-21), representative ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT spectra $(3 / 4,6-8,12,13,17,20$, and 21), and crystallographic information file (CIF) of 12. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050972V

[^0]: * Corresponding author. Tel: +91-20-25882456. Fax: +91-2025893614.
 (1) (a) Collett, L. A.; Davies-Coleman, M. T.; Rivett, D. E. A.; Drewes, S. E.; Horn, M. M. Phytochemistry 1997, 44, 935. (b) Hunter, T. J.; O'Doherty, G. A. Org. Lett. 2001, 3, 2777. (c) Smith, C. M.; O'Doherty, G. A. Org. Lett. 2003, 5, 1959.
 (2) (a) Echeverri, F.; Arango, V.; Quiñones, W.; Torres, F.; Escobar, G.; Rosero, Y.; Archbold, R. Phytochemistry 2001, 56, 881. For synthesis, see: (b) Murga, J.; García-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 7909. (c) Murga, J.; García-Fortanet, J.; Carda, M.; Marco, J. A. J. Org. Chem. 2004, 69, 7277.
 (3) Andrianaivoravelona, J. O.; Sahpaz, S.; Terreaux, C.; Hostettmann, K.; Stoeckli-Evans, H.; Rasolondramanitra, J. Phytochemistry 1999, $52,265$.
 (4) (a) Juliawaty, L. D.; Kitajima, M.; Takayama, H.; Achmad, S. A.; Aimi, N. Phytochemistry 2000, 54, 989. (b) Juliawaty, L. D.; Watanabe, Y.; Kitajima, M.; Achmad, S. A.; Takayama, H.; Aimi, N. Tetrahedron Lett. 2002, 43, 8657. (c) BouzBouz, S.; Cossy, J. Org. Lett. 2003, 5, 1995. (d) Enders, D.; Lenzen, A.; Müller, M. Synthesis 2004, 1486. (e) Ramana C. V.; Raghupathi, N.; Gurjar, M. K.; Chorghade, M. S. Tetrahedron Lett. 2005, 46, 4073.
 (5) (a) Davies-Coleman, M. T.; Rivett, D. E. A. Fortschr. Chem. Org. Naturst. 1989, 55, 1. (b) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.

[^1]: (6) Tosaki, S.-Y.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Org. Lett. 2003, 5, 495.
 (7) (a) Brimacombe, J. S.; Tucker, L. C. N. Carbohydr. Res. 1966, 2, 341. (b) Shing, T. K. M.; Tsui, H. C.; Zhou, Z.-H.; Mak, T. C. W. J. Chem. Soc., Perkin Trans. 1 1992, 887. (c) Baudat, A.; Picasso, S.; Vögel, P. Carbohydr. Res. 1996, 281, 277. (d) Xu, D. D.; Waykole, L.; Calienni, J. V.; Ciszewski, L.; Lee, G. T.; Liu, W.; Szewczyk, J.; Vargas, K.; Prasad, K.; Repiè, O.; Blacklock, T. J. Org. Process Res. Dev. 2003, 7, 856.
 (8) Bock, K.; Lundt, I.; Pedersen, C.; Sonnichsen, R. Carbohydr. Res. 1988, 174, 331.
 (9) Barton, D. H. R.; McCombie, W. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
 (10) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.

[^2]: (11) (a) Satoh, T.; Nanba, K.; Suzuki, S. Chem. Pharm. Bull. 1971, 19, 817. (b) Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356.
 (12) G. M. Sheldrick, SHELX-97 Program for Crystal Structure Solution and Refinement, University of Gottingen, Germany, 1997.

[^3]: ${ }^{a}$ Reagents and conditions: (a) methyl propiolate, $n-\mathrm{BuLi}$, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{CaCO}_{3}$, quinoline, benzene, $1 \mathrm{NTP}, 0.5-1 \mathrm{~h}, 72 \%$, followed by PPTS, CHCl_{3}, reflux, $6 \mathrm{~h}, 95 \%$; (c) TFA, DCM, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 78 \%$ ($\mathbf{1 8 / 1 9}$ and 20) and 90% (3/4); (d) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $6 \mathrm{~h}, 94 \%$.

