

A Carbohydrate-Based Approach for the Total Synthesis of 1,3-Polyol/α-Pyrone Antifungal Natural Products

C. V. Ramana,* Burgula Srinivas, Vedavati G. Puranik, and Mukund K. Gurjar

National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411 008, India

vr.chepuri@ncl.res.in

Received May 16, 2005

An elimination and stereoselective hydrogenation of α -D-glucoheptonic- γ -lactone derivative has been applied to prepare a differentially protected anti,anti-1,3,5-triol system, the utility of which has been extended for the total synthesis of anti-fungal 1,3-polyol/ α -pyrone natural products.

The 5,6-dihydro- δ -pyrones with an integrated 1,3-skipped polyol system form a basic skeleton of several natural products represented by cryptocarya diacetate (1),¹ passifloricin (2),² 1,3-polyol/ α -pyrones (3 and 4),³ and strictifolione (5)⁴ (Figure 1). The broad range of biological activities associated with these natural products was ascribed to their inherent ability to act as good Michael acceptors.⁵ Natural products 3 and 4,³ isolated from *Ravensara anisata*, possess inhibitory activity against *C. cucumerinum* which was comparable to miconazole and

(3) Andrianaivoravelona, J. O.; Sahpaz, S.; Terreaux, C.; Hostettmann, K.; Stoeckli-Evans, H.; Rasolondramanitra, J. *Phytochemistry* **1999**, *52*, 265.

(5) (a) Davies-Coleman, M. T.; Rivett, D. E. A. Fortschr. Chem. Org. Naturst. 1989, 55, 1. (b) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.

FIGURE 1. Representative skipped polyol natural products with an integrated α -pyrone moiety.

FIGURE 2. Retrosynthetic strategy for the key syn, syn-1, 3, 5-triol synthesis and of the α -pyrone moiety.

propiconazole. The synthesis of **3** and **4** reported by Shibasaki and co-workers turned out to be their enantiomers. Herein, we report the first synthesis of the natural occurring **3** and **4** by adopting the chiral pool approach.

The structural analysis of **3** and **4** revealed that the diacetonide ($\mathbf{10}$)⁷ of commercially available α -D-glucoheptonic- γ -lactone would be an ideal starting point as depicted in Figure 2. The deoxygenation at C-3 by basemediated elimination and stereocontrolled reduction⁸ and Barton–McCombie radical deoxygenation⁹ of C-5 followed by an inversion at C-4 are the key steps to secure the preparation of the key intermediate ($\mathbf{7}$). Coupling reaction between the advanced intermediate ($\mathbf{6}$) and methyl propiolate by the Yamaguchi method, ¹⁰ partial hydroge-

^{*} Corresponding author. Tel: +91-20-25882456. Fax: +91-20-25893614.

^{(1) (}a) Collett, L. A.; Davies-Coleman, M. T.; Rivett, D. E. A.; Drewes, S. E.; Horn, M. M. *Phytochemistry* **1997**, *44*, 935. (b) Hunter, T. J.; O'Doherty, G. A. *Org. Lett.* **2001**, *3*, 2777. (c) Smith, C. M.; O'Doherty, G. A. *Org. Lett.* **2003**, *5*, 1959.

^{(2) (}a) Echeverri, F.; Arango, V.; Quiñones, W.; Torres, F.; Escobar, G.; Rosero, Y.; Archbold, R. *Phytochemistry* **2001**, *56*, 881. For synthesis, see: (b) Murga, J.; García-Fortanet, J.; Carda, M.; Marco, J. A. *Tetrahedron Lett.* **2003**, *44*, 7909. (c) Murga, J.; García-Fortanet, J.; Carda, M.; Marco, J. A. *J. Org. Chem.* **2004**, *69*, 7277. (3) Andrianaivoravelona, J. O.; Sahpaz, S.; Terreaux, C.; Hostett-

^{(4) (}a) Juliawaty, L. D.; Kitajima, M.; Takayama, H.; Achmad, S. A.; Aimi, N. Phytochemistry 2000, 54, 989. (b) Juliawaty, L. D.; Watanabe, Y.; Kitajima, M.; Achmad, S. A.; Takayama, H.; Aimi, N. Tetrahedron Lett. 2002, 43, 8657. (c) BouzBouz, S.; Cossy, J. Org. Lett. 2003, 5, 1995. (d) Enders, D.; Lenzen, A.; Müller, M. Synthesis 2004, 1486. (e) Ramana C. V.; Raghupathi, N.; Gurjar, M. K.; Chorghade, M. S. Tetrahedron Lett. 2005, 46, 4073. (5) (a) Davies-Coleman, M. T.; Rivett, D. E. A. Fortschr. Chem. Org.

⁽⁶⁾ Tosaki, S.-Y.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Org. Lett. **2003**, *5*, 495.

^{(7) (}a) Brimacombe, J. S.; Tucker, L. C. N. Carbohydr. Res. 1966, 2, 341. (b) Shing, T. K. M.; Tsui, H. C.; Zhou, Z.-H.; Mak, T. C. W. J. Chem. Soc., Perkin Trans. 1 1992, 887. (c) Baudat, A.; Picasso, S.; Vögel, P. Carbohydr. Res. 1996, 281, 277. (d) Xu, D. D.; Waykole, L.; Calienni, J. V.; Ciszewski, L.; Lee, G. T.; Liu, W.; Szewczyk, J.; Vargas, K.; Prasad, K.; Repiè, O.; Blacklock, T. J. Org. Process Res. Dev. 2003, 7, 856.

⁽⁸⁾ Bock, K.; Lundt, I.; Pedersen, C.; Sonnichsen, R. *Carbohydr. Res.* **1988**, *174*, 331.

⁽⁹⁾ Barton, D. H. R.; McCombie, W. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.

⁽¹⁰⁾ Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.

SCHEME 1. Synthesis of the Epoxide 6^a

^a Reagents and conditions: (a) Ag₂O, BnBr, CH₂Cl₂, reflux, 6 h, 84%; (b) KO-t-Bu, THF, −78 °C, 0.25 h, 81%; (c) NaBH₄, NiCl₂·6H₂O, methanol, 0 °C, 1.5 h, 61%; (d) NaH, CS₂, MeI, THF, −15 °C—rt, 12 h, 93%, followed by n-Bu₃SnH, AIBN, toluene, reflux, 5 h, 71%; (e) DIBAL-H, CH₂Cl₂, −78 °C, 0.5 h, followed by [C₆H₅CH₂CH₂CH₂PPh₃]+I−, n-BuLi, THF, 0 °C → rt, 12 h, 93%; (f) DEAD, TPP, benzoic acid, THF, 0 °C, 2 h, 69%; (g) H₂-Raney-Ni, ethanol, 20 psi, 12 h, followed by NaOMe, MeOH, rt, 2 h, 91%; (h) NaH, PMBCl, DMF, 0°C → rt, 6 h, followed by PPTS, methanol, 24 h, 85%; (i) (i) TsCl, Bu₂SnO (cat.), triethylamine, DMAP, CH₂Cl₂, rt, 1 h, followed by (ii) K₂CO₃, MeOH, 0 °C—rt, 0.5 h, 78%.

nation, and lactonization should complete the total synthesis of the natural products 3 and 4.

Protection of the hydroxyl group at C-2 with silver oxide and benzyl bromide gave the benzyl ether 11. After substantial experimentation of the elimination step, we concluded that potassium tert-butoxide provided satisfactory yield. 7d,8 Selective conjugate reduction of the lactone **9** with -OBn intact was achieved with NiCl₂-NaBH₄.¹¹ The spectral and analytical data of 12 were in agreement with the assigned structure, which was further substantiated by single-crystal X-ray crystallography. 12 Subsequent reduction of 8 with DIBAL-H and Wittig olefination with 3-phenylpropyltriphenylphosphorane furnished 13. The Z-configuration of 13 was evident from the coupling constant (J = 10.3 Hz). Mitsunobu reaction of 13 using DEAD and benzoic acid was facile to give the benzoate derivative 14. Hydrogenation of the double bond present in 14 by using Raney-Ni followed by saponification with catalytic NaOMe gave the diol 7. The diol 7 was protected with p-methoxybenzyl chloride-NaH, and then the 1,2-isopropylidene group hydrolyzed in the presence of PPTS in MeOH to obtain the terminal diol 15. The primary hydroxyl group of 15 was selectively tosylated by using TsCl, Bu₂SnO, and triethylamine in dichloromethane followed by cyclization with K2CO3 in methanol to afford the epoxide **6** (Scheme 1).

Our next concern involved the construction of the key pyrone ring for which the lithium salt of methyl propi-

SCHEME 2. Total Synthesis of Anti-fungal Natural Products 3/4"

^a Reagents and conditions: (a) methyl propiolate, n-BuLi, BF₃·Et₂O, THF, -78 °C, 1 h, 93%; (b) H₂, Pd/CaCO₃, quinoline, benzene, 1 NTP, 0.5-1 h, 72%, followed by PPTS, CHCl₃, reflux, 6 h, 95%; (c) TFA, DCM, 0 °C, 0.5 h, 78% (**18/19** and **20**) and 90% (**3/4**); (d) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt, 6 h, 94%.

olate was reacted with the epoxide **6** in THF at -78 °C to furnish the β -hydroxy alkyne derivative **16**. The latter compound (**16**) was successively subjected to partial reduction in the presence of Lindlar catalyst and lactonization resulting in the formation of the α -pyrone intermediate **17**.

Attempted deprotection of PMB ethers of 17 using TFA in dichloromethane provided a (1:1) regiomeric mixture of mono-PMB ethers 18 and 19 along with the diol 20. The diol 20 was converted to the diacetate 21 which showed spectral data identical with the reported values. The acetylation of 18/19 followed by treatment with TFA gave a mixture of 3 and 4 (3:1), separated by preparative HPLC. The spectral and analytical data of 3 and 4 were identical with the data reported for the natural products. Notably, a periodic examination of ¹H NMR spectra of pure isomers 3 and 4 indicated the migratory aptitudes of acetyl group in these compounds, however with different rate of migration. For example, the interconversion of $4 \rightarrow 3$ was substantially faster than $3 \rightarrow 4$ (Scheme 2).

In summary, we report a simple strategy for the synthesis of anti,anti- and syn,syn-1,3,5-polyol systems using a chiral pool approach. This study enabled us to carry out the first total synthesis of antifungal natural 1,3-polyol/ α -pyrones **3** and **4**.

Experimental Section

2-Benzyloxy-3-deoxy-6,7-O-isopropylidine-D-*arabino***hept-2-enoic-** γ -**lactone** (9). At -78 °C, a suspension of KO-t-Bu (1.48 g, 13.2 mmol) in anhydrous THF (50 mL) was treated with a solution of **11** (5 g, 13.2 mmol) in anhydrous THF (80 mL) and stirred for 15 min at -78 °C. The reaction mixture was quenched with a solution of acetic acid (0.8 mL, 13.2 mmol) in THF (5 mL) and allowed to reach rt. The contents were filtered (Celite) and concentrated, and the crude product was purified by crystallization from ethyl acetate/hexane (1:3) to procure **9** (3.43 g, 81%) as a colorless solid. Mp: 162 °C. [α]²⁵_D = +31.7 (c = 1, CHCl₃). IR (CHCl₃): ν 3420, 3020, 2400, 1760, 1652, 1381, 1215, 1059, 756, 668 cm⁻¹. ¹H NMR (200 MHz, CDCl₃) δ: 7.40–7.36 (m, 5H), 6.17 (d, J = 2.1 Hz, 1H), 5.09 (dd, J = 4.1, 2.1 Hz, 1H), 5.02 (s, 2H), 4.16 (dd, J = 6.2, 4.1 Hz, 1H), 4.12 (dt, J = 6.2, 3.5 Hz, 1H), 3.99 (dd, J = 7.6, 3.5 Hz, 1H), 3.55 (dd, J =

^{(11) (}a) Satoh, T.; Nanba, K.; Suzuki, S. Chem. Pharm. Bull. 1971, 19, 817. (b) Kinoshita, A.; Mori, M. J. Org. Chem. 1996, 61, 8356. (12) G. M. Sheldrick, SHELX-97 Program for Crystal Structure Solution and Refinement, University of Gottingen, Germany, 1997.

7.6, 4.1 Hz, 1H), 2.40 (br.s, 1H), 1.37 (s, 3H), 1.35 (s, 3H). $^{13}\mathrm{C}$ NMR (50 MHz) $\delta\colon$ 25.1 (q), 26.7 (q), 67.1 (t), 72.8 (t), 73.1 (d), 75.3 (d), 79.5 (d), 109.7 (s), 115.9 (d), 127.6 (d), 128.5 (d), 128.6 (d), 134.7 (s), 145.9 (s), 167.8 (s) ppm. Anal. Calcd for $C_{17}H_{20}O_6\colon$ C, 63.74; H, 6.29. Found: C, 63.80; H, 6.03.

2-O-Benzyl-3-deoxy-6,7-O-isopropylidine-D-gluco-heptoic- γ -lactone (12). At 0 °C, a solution of 9 (1 g, 3.1 mmol) in methanol (30 mL) was treated with NiCl₂·6H₂O (220 mg, 0.9 mmol) and stirred for 30 min. To this solution were added NaBH₄ (342 mg, 9.1 mmol) and acetic acid (to maintain pH = 7) in three portions during a 10 min interval. After the addition was complete, stirring was continued for another 30 min at 0 °C. The contents were filtered (Celite), concentrated, dissolved in ethyl acetate (25 mL), washed with water and brine, dried (Na₂SO₄), and concentrated to get a white solid. The crude product was purified by crystallization in CH2Cl2/hexane to get a white crystalline solid 12 (615 mg, 61%). Mp: 116 °C. $[\alpha]^{25}_D =$ +32.4 (c=1, CHCl₃). IR (CHCl₃): ν 3442, 2992, 2881, 1787, 1455, 1370, 1216, 848, 755 cm⁻¹. ¹H NMR (200 MHz, CDCl₃) δ : 7.38-7.32 (m, 5H), 4.96 (d, J = 11.8 Hz, 1H), 4.75 (d, J = 11.8Hz, 1H), 4.59 (ddd, J = 8.9, 6.4, 2.9 Hz, 1H), 4.24 (dd, J = 9.2, 8.4 Hz, 1H, 4.19 - 3.96 (m, 3H), 3.45 (br.d, J = 4.4 Hz, 1H), 2.51(ddd, J = 13.1, 8.3, 6.4 Hz, 1H), 2.30 (dt, J = 13.1, 9.1 Hz, 1H),1.38 (s, 3H), 1.33 (s, 3H). ¹³C NMR (75 MHz) δ: 25.1 (q), 26.7 (q), 31.1 (t), 67.2 (t), 72.1 (t), 72.9 (d), 73.2 (d), 75.3 (d), 76.4 (d), 109.4 (s), 128.0 (d), 128.4 (d), 136.9 (s), 174.5 (s) ppm. Anal. Calcd for C₁₇H₂₂O₆: C, 63.34; H, 6.88. Found: C, 63.38; H, 7.14.

Crystal Data. A colorless platelike crystal of approximate size $0.48 \times 0.24 \times 0.02$ mm was used for data collection on a Bruker SMART APEX CCD diffractometer using Mo Kα radiation with fine focus tube with 50 kV and 30 mA. Crystal to detector distance 6.05 cm, 512×512 pixels/frame, multiscan data acquisition. Total scans = 3, total frames = 1212, oscillation/frame -0.3°, exposure/frame = 10.0 s/frame, maximum detector swing angle = -30.0° , beam center = (260.2, 252.5), in plane spot width = 1.24, SAINT integration, θ range = 2.52-25.0°, completeness to θ of 23.33° is 99.2%. SADABS correction applied, $C_{17}H_{22}O_6$, M = 322.35. Crystals belong to monoclinic, space group $P2_1$, a = 9.195(1) Å, b = 6.1777(8) Å, c = 15.004(2)Å, $\beta=93.846(2)^\circ$, V=850.4 (2) ų, Z=2, $D_{\rm c}=1.259$ mg m⁻³, μ (Mo K α) = 0.095 mm⁻¹, T=295(2) K, 4283 reflections measured, 2795 unique $[I > 2\sigma(I)]$, R value 0.0594, wR2 = 0.1375. All of the data were corrected for Lorentzian, polarization, and absorption effects. SHELX-97 (ShelxTL)12 was used for structure solution and full-matrix least-squares refinement on F^2 . Hydrogen atoms were included in the refinement as per the riding model.

Treatment of Epoxide 6 with Methyl Propiolate. Methyl propiolate (590 μ L, 6.6 mmol) was taken in a flame-dried twoneck round-bottom flask (50 mL) and dissolved in anhydrous THF (15 mL). The reaction mixture was cooled to -78 °C, treated with n-BuLi (4.2 mL, 6.64 mmol, 1.6 M in hexane) dropwise, stirred for 15 min, treated with BF₃·Et₂O (0.84 mL, 6.6 mmol), and stirred for an additional 15 min. Once the formation of dark black alkyne borane was observed, a solution of epoxide 6 (335 mg, 0.66 mmol) in anhydrous THF (10 mL) was added and stirred for 30 min at -78 °C. The reaction was quenched at -78°C by addition of satd Na₂SO₄ (20 mL) and taken in ethyl acetate-water, and the aqueous phase was extracted with ethyl acetate. The combined organic phase was washed with brine, dried (Na₂SO₄), and concentrated. Purification by column chromatography (20% ethyl acetate in petroleum ether) gave 16 (365 mg, 93%). $[\alpha]^{25}D = +56.7$ (c = 1, CHCl₃). IR (CHCl₃): ν 3457, 3011, 2936, 2859, 2238, 1714, 1612, 1586, 1513, 1454, 1435, 1302, 1250, 1075, 1035, 822, 755, 667 cm⁻¹. ¹H NMR (200 MHz, CDCl₃) δ : 7.31–7.14 (m, 9H), 6.83 (br.d, J = 8.4 Hz, 4H), 4.52 (d, J = 11.2 Hz, 1H), 4.47 (d, J = 11.2 Hz, 1H), 4.30 (d, J = 11.2 Hz)Hz, 1H), 4.27 (d, J = 11.2 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.90-3.73 (m, 2H), 3.71 (s, 3H), 3.44-3.33 (m, 1H), 2.66-2.58 (t, J = 7.5 Hz, 2H), 2.47 - 2.26 (m, 2H), 2.03 - 1.90 (m, 1H), 1.71 - 2.26 (m, 2H), 2.03 - 1.90 (m, 2H), 2.03 - 2.26 (m, 2H), 2.03 - 2.20 (m, 2H), 2.20 - 2.20 (m, 2H),1.33 (m, 10H). ¹³C NMR (50 MHz) δ: 24.6 (t), 27.3 (t), 31.6 (t), 33.9 (t), 35.9 (t), 38.3 (t), 39.9 (t), 52.4 (q), 55.1 (q), 69.3 (d), 70.0 (t), 70.5 (t), 74.5 (s), 74.8 (d), 76.4 (d), 86.2 (s), 113.7 (d), 113.9 (d), 125.7 (d), 128.3 (d), 128.4 (d), 129.6 (d), 129.7 (d), 130.5 (s), $142.3~(s),\ 153.8~(s),\ 159.2~(s),\ 159.4~(s)$ ppm. Anal. Calcd for $C_{36}H_{44}O_7;\ C,\ 73.44;\ H,\ 7.53.$ Found: C, $73.14;\ H,\ 7.80.$

PMB Deprotection of 17. A solution of compound **17** (145 mg, 0.26 mmol) in CH_2Cl_2 (10 mL) at 0 °C was treated with TFA (50 μL) and stirred for 30 min at 0 °C. The reaction was quenched by addition of saturated bicarbonate solution, and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layer was washed with brine, dried (Na₂SO₄), and concentrated. The crude product was purified by column chromatography (40% \rightarrow 50% ethyl acetate in petroleum ether) to afford a 1:1 mixture of alcohols **18** and **19** (61 mg, 54%) and diol **20** (20 mg, 24%).

Data for 18 and 19. $[\alpha]^{25}_D = +54.8 \ (c = 1, \, CHCl_3)$. IR $(CHCl_3)$: ν 3462, 3019, 2937, 2860, 1719, 1612, 1514, 1454, 1390, 1251, 1215, 1035, 757, 668 cm⁻¹. 1 H NMR (200 MHz, CDCl_3) δ : 7.19–7.07 (m, 7H), 6.82–6.70 (m, 3H), 5.96–5.88 (m, 1H), 4.59–4.21 (m, 3H), 3.92–3.77 (m, 1H), 3.71 (s, 3H), 3.68–3.54 (m, 1H), 2.59–2.49 (m, 2H), 2.33–2.18 (m, 2H), 2.14–1.67 (m, 2H), 1.67–1.45 (m, 6H), 1.41–1.28 (m, 3H). 13 C NMR (50 MHz) δ : 24.1 (t), 25.1 (t), 29.1 (t), 29.7 (t), 31.5 (t), 31.6 (t), 33.1 (t), 35.8 (t), 35.9 (t), 37.6 (t), 38.8 (t), 40.7 (t), 41.8 (t), 55.1 (q), 68.0 (d), 70.2 (t), 70.4 (t), 70.6 (d), 74.7 (d), 75.2 (d), 75.5 (d), 79.5 (d), 113.9 (d), 121.2 (d), 121.4 (d), 125.6 (d), 125.7 (d), 128.2 (d), 128.3 (d), 129.5 (d), 129.6 (d), 129.8 (s), 142.2 (s), 142.5 (s), 144.8 (d), 145.2 (d), 159.3 (s), 159.4 (s), 163.9 (s), 164.3 (s) ppm. Anal. Calcd for $C_{27}H_{34}O_5$: C_7 73.94; H, 7.81. Found: C_7 74.05; H, 7.63.

Data of Diol 20. [α] $^{25}_{\rm D}$ = +62.1 (c = 1, CHCl $_3$). IR (CHCl $_3$): ν 3684, 3020, 2934, 1725, 1522, 1476, 1215, 1055, 759, 669 cm $^{-1}$. ¹H NMR (200 MHz, CDCl $_3$) δ: 7.30–7.11 (m, 5H), 6.89 (dt, J = 9.8, 4.5, 3.8 Hz, 1H), 6.02 (dt, J = 9.8, 1.8 Hz, 1H), 4.72–4.57 (br.ddt, J = 8.9, 7.5, 5.5 Hz, 1H), 4.15–4.03 (m, 1H), 3.90–3.79 (m, 1H), 3.50 (b, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.45–2.39 (m, 2H), 2.08–1.94 (m, 1H), 1.81–1.32 (m, 9H). ¹³C NMR (50 MHz) δ: 24.9 (t), 29.4 (t), 31.4 (t), 35.8 (t), 38.1 (t), 42.3 (t), 42.7 (t), 69.5 (d), 72.7 (d), 76.2 (d), 121.2 (d), 125.7 (d), 128.2 (d), 128.3 (d), 142.4 (s), 145.4 (d), 164.2 (s) ppm. Anal. Calcd for C $_{19}$ H $_{26}$ O $_4$: C, 71.66; H, 8.23. Found: C, 71.39; H, 8.81.

Diacetate 21. Treatment of 20 (29 mg, 0.09 mmol) in CH₂- Cl_2 (6 mL) with Ac_2O (85 μ L, 0.91 mmol), triethylamine (126 $\mu L,\,0.91$ mmol), and DMAP (5 mg) and usual workup after 6 h of stirring followed by purification by column chromatography (30% ethyl acetate in petroleum ether) gave 21 (34 mg, 94%) as a yellow oil: $[\alpha]^{25}D = +48.6$ (c = 1, CHCl₃). IR (CHCl₃): ν 3020, 2936, 2861, 1730, 1496, 1374, 1242, 1216, 1152, 1038, 758, 668 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ: 7.28–7.25 (m, 2H), 7.18– 7.15 (m, 3H), 6.87 - 6.84 (m, 1H), 6.02 - 6.00 (dd, J = 9.7, 1.9 Hz.1H), 5.07-5.02 (m, 1H), 4.95-4.90 (m, 1H), 4.50-4.45 (m, 1H), $2.61 - 2.58 \; (\mathrm{t}, J = 7.5 \; \mathrm{Hz}, \, 2\mathrm{H}), \, 2.46 - 2.40 \; (\mathrm{m}, \, 1\mathrm{H}), \, 2.33 - 2.27 \; (\mathrm{m}, \, 1\mathrm{Hz}), \, 2.33 - 2.27 \; (\mathrm{m}, \,$ 1H), 2.16-2.10 (m, 1H), 2.05 (s, 3H), 2.03 (s, 3H), 1.99-1.89 (m, 2H), 1.84-1.79 (m, 1H), 1.66-1.57 (m, 4H), 1.39-1.28 (m, 2H). ¹³CNMR (125 MHz, CDCl₃) δ: 21.1 (q), 24.6 (t), 29.1 (t), 31.0 (t), 34.1 (t), 35.6 (t), 38.9 (t), 38.9 (t), 67.8 (d), 70.8 (d), 74.9 (d), 121.3 (d), 125.7 (d), 128.2 (d), 128.4 (d), 142.3 (s), 144.7 (d), 163.7 (s), 170.6 (s), 170.8 (s) ppm. MALDI-TOF (MS): calcd for $C_{23}H_{30}O_6Na$ 425.19, found 425.19 (M + Na). Anal. Calcd for C₂₃H₃₀O₆: C, 68.64; H, 7.51. Found: C, 68.89; H, 7.61.

Synthesis of α**-Pyrone Natural Products 3 and 4.** In a manner similar to that used in the deprotection of **17**, treatment of **18**-Ac/**19**-Ac (58 mg, 0.12 mmol) in CH₂Cl₂ (6 mL) with TFA (20 μ L), stirring at 0 °C for 30 min, usual workup, and purification by column chromatography (40% ethyl acetate in petroleum ether) gave an equilibrium mixture of natural regioisomers **3** and **4** (39 mg, 90%) as a yellow oil. [α]²⁵_D = +39 (c = 0.4, MeOH) [lit.³ [α]²⁵_D = +35 (c = 0.05, MeOH)]. IR (CHCl₃): ν 3440, 3019, 2934, 2859, 1724, 1513, 1496, 1384, 1250, 1216, 1043, 757, 668 cm⁻¹. MALDI-TOF (MS): calcd for C₂₁H₂₈O₅Na 383.18, found 383.17 (M + Na). Anal. Calcd for C₂₁H₂₈O₅: C, 69.98; H, 7.83. Found: C, 69.79; H, 7.96.

A portion of the 3/4 mixture was subjected to preparative HPLC separation, and the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of the separated 3 and 4 were recorded. In case of the minor isomer 4, we found the equilibration is facile and the difference in the ratio of 4/3 changed from 1:0.14 ($^1\mathrm{H}$ NMR) to $\sim 1:0.75$ ($^{13}\mathrm{C}$ NMR), the later being recorded overnight.

Major Isomer 3. [α]²⁵_D = +33 (c = 0.3, MeOH) [lit.⁴ [α]²⁵_D = +35 (c = 0.05, MeOH)]. ¹H NMR (500 MHz, CDCl₃) δ: 7.27–7.24 (m, 2H), 7.18–7.14 (m, 3H), 6.87 (dt, J = 9.8, 4.2 Hz, 1H), 6.01 (br dt, J = 9.5, 1.7 Hz, 1H), 4.97–4.92 (m, 1H), 4.66–4.60 (m, 1H), 3.90–3.86 (m, 1H), 2.59 (t, J = 7.5 Hz, 2H), 2.40–2.37 (m, 2H), 2.02 (s, 3H),1.95–1.41 (m, 10H). ¹³C NMR (125 MHz) δ: 21.3 (q), 24.8 (t), 29.4 (t), 31.1 (t), 34.5 (t), 35.7 (t), 41.7 (t), 42.3 (t), 67.0 (d), 72.3 (d), 76.6 (d), 121.2 (d), 125.7 (d), 128.3 (d), 128.4 (d), 142.3 (s), 145.2 (d), 163.9 (s), 171.3 (s) ppm.

Minor Isomer 4. ¹H NMR (500 MHz, CDCl₃): δ 7.27–7.24 (m, 2H), 7.18–7.14 (m, 3H), 6.87–6.84 (ddd, J=9.7, 6.1, 2.4 Hz, 1H), 6.01 (ddd, J=9.7, 2.6, 0.7 Hz, 1H), 5.24–5.19 (m, 1H), 4.54–4.48 (m, 1H), 3.72–3.67 (m, 1H), 2.61 (t, J=7.5 Hz, 2H), 2.48–2.43 (m, 1H), 2.34–2.26 (m, 1H), 2.18 (ddd, J=14.6, 8.4, 6.3 Hz, 1H), 2.05 (s, 3H), 1.95 (ddd, J=14.6, 6.8, 4 Hz, 1H), 1.82–1.71 (m, 2H), 1.66–1.42 (m, 6H). ¹³C NMR (125 MHz) δ:

 $21.3~(q),\,25.0~(t),\,29.2~(t),\,31.3~(t),\,35.8~(t),\,37.7~(t),\,39.3~(t),\,41.7~(t),\,69.0~(d),\,69.2~(d),\,75.1~(d),\,121.4~(d),\,125.7~(d),\,128.3~(d),\,128.4~(d),\,142.4(s),\,144.7~(d),\,163.9~(s),\,170.9~(s).$

Acknowledgment. B.S. thanks CSIR, New Delhi, for the financial assistance in the form of a research fellowship.

Supporting Information Available: Experimental procedures and spectral and analytical data for all new compounds (3/4, 6–21), representative ¹H, ¹³C, and DEPT spectra (3/4, 6–8, 12, 13, 17, 20, and 21), and crystallographic information file (CIF) of 12. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050972V